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Nonlocal behavior during thermal lagging is studied in this work to accommodate the effect of the
thermomass (TM) of the dielectric lattices. Perfect correlations are established, with the lagging time in
the TM model equivalent to the phase lag of the heat flux vector and the length parameter in the TM
model equivalent to the correlating length describing the nonlocal response. Simultaneous existence of
the nonlocal (in space) and lagging (in time) behaviors give rise to a new type of thermal waves, which

can be many times faster than the Cattaneo—Vernotte waves. Nonlinear behaviors of the phase lag and
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thermal lagging.

the correlating length are considered in the general model to study their influences on suppressing the
sharp wavefronts. Dominating parameters are extracted to characterize the nonlocal response with

© 2010 Elsevier Masson SAS. All rights reserved.

1. Introduction

Ultrafast heat transport that occurs in times comparable to the
mean free times of energy carriers is inspired by the advancement
of ultrashort pulsed lasers over the past decade [1—7]. Due to the
limited number of collisions in such short times, which are of the
order of 10 femtoseconds (fs) for electron-to-electron collisions,
1 picosecond (ps) for electron-to-phonon collision, and 10 ps for
phonon-to-phonon collisions [8,9], individual behaviors of energy
carriers will become pronounced. Consequently, traditional
concepts in heat transport based on the averaged behaviors over
numerous collisions do not apply. Though phenomenological by
nature, the constitutive equation provides a convenient approach in
describing the ultrafast physical response. Evolving from Fourier's
law describing the quasi-stationary and reversible transition of
thermodynamic states, the constitutive equation can be as
complicated as the dual-phase-lag (DPL) model [10],
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where two phase lags (7 and 14) are present due to the delayed
response during the ultrafast transient. As shown by the second
expression in Eq. (1), the lagging response significantly deviates
from Fourier's law due to involvement of the high-order derivatives
with respect to time. In the special case of 7= 0, the linear effect of
14 (i.e., neglecting the r% term on the left-hand side of Eq. (1))
reduces to the thermal wave model proposed by Cattaneo [11] and
Vernotte [12]. In correlation to the existing microscopic models, in
addition, the lagging behavior described by Eq. (1) absorbs elec-
tron—phonon coupling in metals [8,9], umklapp (temporary
momentum loss) and normal relaxations in phonon scattering [13],
and additional relaxation of internal energy [14] in the same
framework of thermal lagging. In the absence of volumetric heat-
ing, the energy equation accommodating the lagging behavior
described by Eq. (1) is [10,15,16],
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which completely alters the fundamental characteristics of Fourier
diffusion due to the presence of the mixed-derivative terms and the
high-order derivatives of temperature with respect to time.

The high-order terms of 77 and 74 in Eqs (1) and (2) and result
from the gradual expansions of the Taylor series in correlation to
other microscopic models. After the linear version involving the
linear effects of trand 14, for example, the 15 term was instated to
describe the T-waves that can be one order of magnitude faster than
the CV-wave. Effects of 17 were instated recently in describing
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Nomenclature Greek
o thermal diffusivity, K/C, m? s~!
C volumetric heat capacity, ] m > K~! 8 coefficient of resistance, kg m =3 s~!
c speed of light, m s~! Aq correlating length, m
[ specific heat, J kg~ ! K™! p density, kg m~3
E total thermal vibration energy of the lattice at rest, | Tq phase lag of the heat flux, s
f resistance force, N m—> T phase lag of the temperature gradient, s
K equivalent conductivity, W m~! K~ 72 Laplacian
k conductivity, W m~! K!
L ratio of A4 to (atq) Subscripts
l length parameter in the thermomass model, m cv Cattaneo—Vernotte
M thermal Mach number h phonon gas
m mass, kg NL nonlocal with lagging
p pressure, Pa R at rest
q heat flux, W m—2 ™ thermomass
T temperature, K
u drift velocity, m s~ Superscripts
V4 ratio of 7 to 74 X vector of X

transport phenomena in biological systems with multiple energy
carriers [15,16].

Describing the phonon gas in the dielectrics as a weighty and
compressible fluid, the thermomass (TM) model [17,18] distin-
guishes itself from others by accommodating the equivalent mass of
the phonon gas calculated from the Einstein's mass—energy rela-
tion. The distinctive mass of heat thus defined, termed thermomass,
makes the TM model unique in deriving the energy and constitutive
equations from the continuity and Newton's law (momentum
equations) for the weighty and compressible phonon flow. In view
of the TM model, most remarkably, thermal and mechanical fields
are mutually implied, which provides a resolution addressing
Fourier's statement made in 1822, that “...But whatever may be the
range of mechanical theories, they do not apply to the effects of
heat. These make up a special order of phenomena, which cannot be
explained by the principles of motion and equilibrium...”.

This work incorporates the nonlocal behavior in thermal lagging
to capture the effect of the thermomass of phonon gas in dielectrics.
Coexisting with the phase lag of the heat flux vector, 74 in Eq. (1), it
will be shown that instating a correlating length in space is equiv-
alent to the TM model. The nonlocal behavior with thermal lagging
results in a new type of wave that propagates faster than the CV-
wave. The sharp wavefront carrying an infinite time-rate of change
of temperature (in time, or temperature gradient in space),
however, inherits the same deficiency as that in the classical CV-
wave. Effect of 71 thus follows to illustrate dispersion of the sharp
wavefront due to the phase lag of the temperature gradient. Since
nonlocal behavior in thermal lagging is pertinent to the ultrafast
transient, an important task of the present study is to identify the
dominating parameters that could be used in the experimental
studies. Nondimensional analysis will be introduced for this
purpose to characterize the nonlocal response with thermal lagging.

2. Thermomass model

Key quantities in the TM model [17,18] are the thermomass
density of the phonon gas (pp), the drift velocity (up), the pressure
(pn) of the phonon gas induced by the thermal vibration of the
lattice, and the resistance force per unit volume (fy):
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The thermomass density (pp) is calculated from the volumetric
average of the thermomass (my) of the lattice, my, = E/c? resulting
from the Einstein's mass—energy relation with E = mgc,T repre-
senting the thermal vibration energy stored in the lattice at rest.
Heat flux (q) is carried with the drift velocity (uy) of the phonon gas
in which the volumetric energy density is CT. The phonon gas
pressure (p) is derived from the Debye's equation of state involving
the Griineisen constant (vy). By substituting the first expression in
Eq. (3) for py, it can be readily seen that the phonon gas pressure is
proportional to its temperature squared, which is exactly the same
behavior as that in the electron gas in metals [7]. The resistance
force results from the gradient of the phonon gas pressure,
fh = —dpp/dx, and the Darcy's law that describes phonon scattering
through the porous dielectrics. The resistance coefficient (3) is the
proportional constant between f;, and up. In its most generic form,
8 = 2yC3T2(pkc?).

Resulting from the concept of mass of heat, the mechanical and
thermal fields become mutually implied in the TM model. In the
case of one-dimensional heat conduction, from Eq. (3), the conti-
nuity equation reduces to the energy equation in the phonon gas,
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The momentum equation, on the other hand, reduces to the

constitutive equation for the phonon gas,
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where 1)y is the lagging time in the thermomass model, which is
about two orders of magnitude larger than the relaxation time of
phonons in the CV-wave model, | = gkp/[2yC(CT)?] is a length
parameter, and M is the thermal Mach number of the drift velocity
relative to the thermal wave speed in the phonon gas. In the second
expression in Eq. (5), the first four terms on the left-hand side
results from the inertia effect, pp(Dup/Dt). The fifth term results from
the pressure gradient of the phonon gas, and the last term results
from the resistance force since f, = fup = 6q/(CT) from Eq. (3).
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Eliminating heat flux (q) from Egs. (4) and (5), it results in an energy
equation containing temperature (T) alone:
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In addition to the wave behavior described by the second order
derivative with respect to time, 9T%/3t%, Eq. (6) contains a mixed-
derivative term, 9T%/dxdt, which is something new to the field of
microscale heat transfer. The DPL model does involve similar
mixed-derivative terms, but they are of the even orders with
respect to x [10]. Note that the length parameter (I) in Eq. (6) is
proportional to the heat flux (q). As the space coordinate (x) is
reversed to the negative direction, the heat flux switches its sign
accordingly, which satisfies the symmetric principle for any phys-
ically admissible constitutive relations [10].

3. Nonlocal behavior

Involvement of a length parameter in Eq. (6) is enlightening to
include the nonlocal behavior, in space, in addition to the lagging
response in time:

qx+Ag,t+ 1) = 4(%(& t). (7)

Equivalence between the nonlocal behavior in space and the
lagging response in time has been established [10], but a simulta-
neous consideration for both has not been made yet due to the lack
of a constitutive model supporting such an expansion. Aiming at
the correlation to the TM model, the phase lag of the heat flux (z4) is
assumed small in comparison with the process time (t), and the
correlating length (44) is assumed small in comparison with the
space dimension (x). The Taylor series expansion of Eq. (7) con-
taining the first-order effects of 74 and A4 then yields
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Eliminating heat flux (q) from Eq. (8) and the conventional
energy equation,
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Equation (10) obtained from the nonlocal response with thermal
lagging (the NL model) has exactly the same form as Eq. (6)
obtained from the TM model, resulting in

K =k(1-M?), 19 =11Mm, A = 2L (11)

While the phase lag of the heat flux (74) is equivalent to the
lagging time (trp) in the thermomass model, the correlating length
(A¢) in the NL model simply stretches the length parameter (I) in the
TM model by two times. With the perfect correlation thus estab-
lished, clearly, the NL model is equivalent to the TM model in
capturing the effect of heat mass for heat transport in dielectrics.

3.1. Effect of 11

Equation (10) represents a new type of energy equation in
microscale heat transport, even though it is mathematically simpler
than the DPL heat equation that contains a third-order, mixed-

derivative term. Since the derivative of the highest order remains to
be with the wave term, 9*T/dt2, a sharp wavefront will continue to
exist like the CV-wave. The NL-wave, as shown below, will be faster
than the CV-wave but both will suffer from the same singularities in
the time-rate of change of temperature (dT/dt) and temperature
gradient (4T/dx) across the wavefront. To remove such singularities,
in parallel to the previous treatment of the CV-wave, the phase lag
of the temperature gradient (t7) is further introduced in Eq. (7),

oT
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The first-order expansion in 17, 7¢, and Aq reads
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and the energy equation in correspondence with Eq. (10) becomes

K \o’T (Ktp\ 93T 19T [Ag\ 0°T 0°T
() (@i = o+ (ot 09
Ctq/ 0x Ctq/ox?0t 14 Ot Tq) 0x0t = Ot
There are two mixed-derivative terms in Eq. (14), which
recovers Eq. (10) as 7t — 0. The derivative of the highest order now
shifts to the third-order mixed-derivative term, 9>T/9x%dt, which
efficiently removes the singularities across the wavefront even with
a small value of 77 [10]. For heat transport in dielectrics, 74 is the
same as the umklapp relation time while 77 results from a simple
stretch from the normal relaxation time by (9/5) times.
All expressions have been derived for the one-dimensional
response. The general forms of Egs. (9) and (13) are

-V q = C& and ¢+ (Aq-V)q + g
= —KVT—KIT%VT, (15)
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for describing the nonlocal response with thermal lagging in a three
dimensional conductor. The nonlocal term involving A4 not only
introduces another mixed-derivative in DPL, it also has a sign
difference as compared to the thermalization term involving 71 on
the left-hand side of Eq. (16).

4. Results and discussion

New types of energy equations have been resulted from the
nonlocal response in the presence of thermal lagging: Equation (10)
containing the linear effect of 4; and 74 and (14) containing an
additional effect of 7. Equation (14) will be used to study the
fundamental characteristics of the nonlocal behavior with thermal
lagging because it covers Eq. (10) as a special case as tris set to zero.

To illustrate the nonlocal effect in thermal lagging, let us
consider a one-dimensional, semi-infinite solid initially kept
a constant temperature Tp, as sketched in Fig. 1. The solid is
disturbed from a stationary state, dT/dt = 0 as t = 0. The surface at
x = 0 is suddenly raised to a constant temperature T,,, which drives
the thermal disturbance to propagate downstream. At a distance
sufficiently far from the heated surface, the temperature recovers
its initial value. Introducing
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Fig. 1. Effect of correlating length (L) on the nonlocal behavior in thermal lagging: The
case of L = 0 reduces to the CV-wave model and the cases of L < 2 are in correlation to
the TM model.

X t T - TO T Aq
£ — - = =1 =
/oy 6= 74 f Tw—To’ z g and L V/atg’ (17)
Eq. (14) and the initial/boundary conditions become
2 3 2 2
et} 0’0 ol a°0  o-0 (18)

+ = otloert—
9% orlop OB T0EaB  gp?
0E.0) = $5E.0) = 0; 0(0.6) =1 and0E.0)~Oasi—~  (19)

Clearly, the nonlocal response with thermal lagging is charac-

terized by two parameters, Z and L as defined in Eq. (17). The Laplace
transform solution to Egs. (13) and (14) is

0(¢;p) = exp

(Lp —\/p)*+4p(p + 1)(1 + zm)e
5 / p (20)

4.1. Effect of Aq and 14

Equation (20) with Z = 0 (17 = 0) reduces to the nondimensional
solution to Eq. (10) in correlation to the NL/TM model:

(tp - VP +app+ 1))z /p

3 (21)

OnL(E:p) = exp

It can be shown by the partial expansion technique [10] along
with the limiting theorem in the Laplace transform that Eq. (21)
represents a wave with a sharp wavefront located at

Cq
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where (22)

Clearly, cni > ccv, implying the NL-wave propagating faster than
the classical CV-wave. Note that ¢; = 2uy and L = Ag/y/(atq) = ¢4/
ccv = 2M in correlation with the TM model. Since up << ccy, the
condition of M < 1 prevails in the TM model, which implies L < 2 in
the correlation. Involvement of ¢, which is equivalent to the mean
free time, and uj (through ¢,) implies that the correlating length (44)
is of the same order as the mean free path in phonon scattering.

Laplace inversion of Eq. (15) can be furnished by the Riemann
sum approximation [10]:

4.72
)
+Re XN: 9(E7p — W) (1)n:| )
n=1

Codes written in both Fortran [10] and Mathematica [19], with
the default local and global accuracies set in Mathematica for
assuring the numerical convergence, are available to evaluate the
infinite series in Eq. (23). ForZ=0(tr=0)and 8 =1 (t = 14), resulting
from the use of fy; given by Eq. (21) in place of 6 in Eq. (23), Fig. 1
shows the effect of L on the spatial distributions of the NL-wave, for
which the wavefront is located at & = 2/[\/(L> + 4) — L]. Since Z= 0
(17 = 0), the case of L = 0 (A4q = 0) reduces to the classical CV-wave.
The wavefront of the NL-wave advances from £ = 1 (L = 0), 1.281
(L=0.5),1.618 (L=1),2 (L =1.5),3.303 (L = 3), 5.193 (L = 5) as the
value of L increases. The temperature level in the heat affected zone
behind the thermal wavefront increases with the value of L. The
cases with L = 0.5, 1, and 1.5 (L < 2) are in correlation with the TM
model since L = 2M and M < 1 in the phonon gas. The correlating
length (44) and the phase lag of the heat flux vector (14) appear as two
material dependent constants in the NL model, with 7, correlating to
the mean free time and Aq correlating to the mean free path in
microscale heat transfer. The ratio, L = A4//(a1q), therefore, could be
greater than two in general without establishing a correlation to the
TM model. The cases of L = 3 and 5 are added in Fig. 1 for the sake of
generality which, however, continue the general trend in the cases of
L<?2.

472 [1_
3 5);6[;0(5;;,

(23)

09} B=1,L=15 .
— Z =0 (NL-wave)
08 W\ —-0

07 W\ —5L=0(DPL) |

06 i\ -

0.3} N\ -
02f SN -

0.1} B RN .
\ ". \\u\\‘\_
0 L

0 1 2

e —— e

3 4 5 6 7 8 9 10

&

Fig. 2. Effect of thermal lagging (Z) on the nonlocal response: The case of Z = 0
corresponds to the NL/TM wave and the case of L = 0 corresponds to the dual-phase-lag
model without the nonlocal behavior.
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Both the NL- and CV-waves result in a sharp wavefront in
transition from the heat affected zone (¢ < 28/[(L? + 4) — L]) to the
thermally unaffected zone (£ > 26/[(L?> + 4) — L]). Consequently, as
shown in Fig. 1, temperature gradient approaches infinity across the
wavefront, which may be seen as a paradox in any wave model as
compared to the infinite speed of heat propagation in Fourier
diffusion. The phase lag of the temperature gradient, the mixed-
derivative term containing tr shown in Eq. (14), is effective in
removing such a singularity at the wavefront. In the presence of the
nonlocal response, L = 1.5, Fig. 2 describes the ways in which
a sharp wavefront is well spread by the effect of 1. As the value of Z
(=11/1q) is slightly disturbed from 0, evidenced by the curve of
Z = 0.005, a finite but large temperature gradient still exists near
¢ = 2 but the transition from the heat affected zone (¢ < 2) to the
thermally unaffected zone (¢ > 2) becomes smooth. This is more
evident as the value of Z further increases to 0.05, as shown by the
dotted curve in Fig. 2. The wavefront is totally destroyed as the
value of Z increases to 5 (dot—dash). The temperature level
increases with the value of Z. As compared to the case of DPL with
L = 0 (dot—dot—dash), r7 # 0 but A; = 0 at the same value of Z =5,
the nonlocal response (dot—dash) results in a higher temperature
than DPL (dot—dot—dash).

5. Conclusion

Nonlocal response, in space, has been extended in the DPL
model to capture the effect of heat mass described in the TM model.
In the absence of the phase lag of the temperature gradient (t7), the
phase lag of the heat flux is equivalent to the lagging time in the TM
model and the correlating length is equivalent to the length
parameter in the TM model. The resulting NL-wave propagates
faster than the CV-wave, with a higher temperature in the much
broader heat affected zone. The exceeding amount increases with
the value of L, which is the ratio between A4 (the correlating length)
to /(atq) (the diffusion length over the period of the relaxation
time). The higher temperature and the faster wave speed of the NL-
wave will put the dielectrics at a higher risk of thermal damage,
which requires special attention in MEMS/NEMS design. The effect
11 effectively destroys the sharp wavefront of the NL-wave, similar
to its effect on the CV-wave. The nonlocal behavior in thermal
lagging further raises the temperatures above those coming from
the lagging behavior (from trand t4) alone.

Experimental evidences are underway to support the thermo-
mass model/nonlocal behavior proposed herewith. Based on the
ultrafast instrumentations that involve excitations of thin films by
femtosecond lasers [20], the primary emphasis has been placed on
the additional thermal disturbances caused by the reflection of the
TM/NL-wave from the film surfaces. With one more wave model
now added into the regime of microscale heat transfer, the term of

“non-Fourier” behavior may need further refinement. So far we
have the CV-wave resulting from the effect of 14, the T-wave
resulting from the r%—effect [10], and now the NL-wave resulting
from the nonlocal behavior in thermal lagging. With the tangling
effects between rapid thermalization and thermal relaxation, the T-
wave can be slower or faster than the NL-wave depending on the
ratio of 71 to 74. Addition of the NL-wave will add another charac-
teristic time in the time scale describing the wave-diffusion duality
in heat transport [21].

References

[1] C. Momma, B.N. Chichkov, S. Nolte, EV. Alvensleben, A. Tunnermann,
H. Welling, B. Wellegehausen, Short-pulse laser ablation of solid targets.
Optics Communications 129 (1996) 134—142.

[2] C. Momma, S. Nolte, B.N. Chichkov, EV. Alvensleben, A. Tunnermann, Precise

laser ablation with ultrashort pulses. Applied Surface Science 109 (1997)

15-19.

S. Preuss, A. Demchuk, M. Stuke, Sub-picosecond UV laser ablation of metals.

Applied Physics A 61 (1995) 33—37.

M.D. Shirk, P.A. Molian, A review of ultrashort pulsed laser ablation of mate-

rials. Journal of Laser Applications 10 (1998) 18—28.

B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry,

Optical ablation by high-power short-pulse lasers. Journal of the Optical

Society of America B 13 (1996) 459—468.

[6] J.M. Hopkins, W. Sibbett, Ultrashort-pulse lasers: big payoffs in a flash.

Scientific American 283 (2000) 72—79.

D.Y. Tzou, J.K. Chen, J.E. Beraun, Recent development of ultrafast thermo-

elasticity. Journal of Thermal Stresses 28 (2005) 563—594.

T.Q. Qiu, C.L. Tien, Short-pulse laser heating on metals. International Journal of

Heat and Mass Transfer 35 (1992) 719—726.

T.Q. Qiu, C.L. Tien, Heat transfer mechanisms during short-pulse laser heating

of metals. ASME Journal of Heat Transfer 115 (1993) 835—841.

[10] D.Y. Tzou, Macro- to Microscale Heat Transfer: The Lagging Behavior. Taylor &
Francis, Washington, D.C., USA, 1997.

[11] C. Cattaneo, A form of heat conduction equation which eliminates the paradox
of instantaneous propagation. Compte Rendus 247 (1958) 431—433.

[12] P. Vernotte, Les paradoxes de la théorie continue de I'équation de la chaleur.
Compte Rendus 246 (1958) 3154—3155.

[13] RA. Guyer, J.A. Krumhansl, Solution of the linearized Boltzmann equation.
Physical Review 148 (1966) 766—778.

[14] M.E. Gurtin, A.G. Pipkin, A general theory of heat conduction with finite wave
speed. Archive for Rational Mechanics and Analysis 31 (1968) 113—126.

[15] D.Y. Tzou, W. Dai, Thermal lagging in multi-carrier systems. International
Journal of Heat and Mass Transfer 52 (2009) 1206—1213.

[16] D.Y. Tzou, Lagging behavior in biological systems, in: 2nd ASME International
Conference on Micro/Nanoscale Heat and Mass Transfer, December 18—21,
2009, Shanghai, China.

[17] B.Y. Cao, Z.Y. Guo, Equation of motion of a phonon gas and non-Fourier heat
conduction. Journal of Applied Physics 102 (2007) 053503.

[18] Z.Y. Guo, Q.W. Hou, Thermal wave based on the thermomass model, ASME
Journal of Heat Transfer, in press.

[19] D.Y. Tzou, Computational techniques in microscale heat transfer. in:
W.J. Minkowycz, E.M. Sparrow, J.Y. Murphy (Eds.), Handbook of Numerical
Heat Transfer, second ed. Wiley, New York, 2006, pp. 623—657 (Chapter 20).

[20] S.D. Brorson, J.G. Fujimoto, E.P. Ippen, Femtosecond electron heat-transport
dynamics in thin gold film. Physical Review Letters 59 (1987) 1962—1965.

[21] D.Y.Tzou, Thermal lagging: duality of diffusion and wave in ultrafast transient,
keynote lecture. in: The 7th International Symposium on Heat Transfer,
October 26—29, 2008, Beijing, China.

3

[4

[5

(7

8

[9



	Nonlocal behavior in thermal lagging
	Introduction
	Thermomass model
	Nonlocal behavior
	Effect of tauT

	Results and discussion
	Effect of lambdaq and tauq

	Conclusion
	References


